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This paper will present neuropsychology as a method
for understanding childhood disorders. Very simply
put, neuropsychology is the study of brain~behavior
relations, and developmental neuropsychology is the
study of how those relations develop in both typical
and atypical cases. More recently, with advances in
neural network models, neuroimaging, and genetics,
a field of developmental cognitive neuroscience has
emerged that tests links across several levels of
analysis: etiology, brain development, neuropsy-
chology, and behavioral symptoms. So, | will argue
that neuropsychology provides an important bridge
across these levels and thus among the other
methods described in other articles in this Annual
Research Review. As it interacts with these other
methods, neuropsychology itselfis being transformed,
and will eventually merge into the wider inter-
discipline of developmental cognitive neuroscience.
This review includes 1) an explanation of what
neuropsychology is, 2) a brief history of how devel-
opmental cognitive neuroscience emerged from
earlier neuropsychological approaches to under-
standing atypical development, 3] three recent
examples that ilustrate the benefits of this approach,
41 issues and challenges this approach must face,
and 5} a forecast for the future of this approach.

What is neuropsychology?
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phe nomena like attention or memory to the behavior
of ir imgiuai neurons; instead, neuropsychology
holds that such phenomena are an emergent prop-
erty wf the interactions among many neurons, and
amoeng networks of neurons. So we could say that
neuropsychology is characterized by a commitment
to ‘emergent materialism’ and is consequently com-
nitted to interdisciplinary integration.
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74 Bruce F. Pennington

The beginnings of the field of developmental cog-
nitive neurgscience can be traced to Lennebergs
seminal book, Biological Foundations of Language
{1967] and subsequent work, such as the work of
Bates and Neville discussed earlier, on whether the
specialization of the left hemisphere for language
ate. Inspired by Lenneberg’s book, consid-
erable research in the 1970s and 1980s was con-
ducted to test whether hemispheric specialization for
language was invariant across development. Many of
these studies used a relatively weak method, dich-
otic listening, to answer this question. Since they
failed to find developmental increases in hemi-
spheric specialization, they often accepted the innate
(null} hypothesis. The classic studies of Bates and
Neville using more powerful methods eventually
made it clear that the answer to this fundamental
question was o', consistent with Lenneberg's ori-
ginal hypothesis of progressive specialization.

There were other advances in the mid-1980s in our
understanding of the development of brain-behavior
relations. Some of these were contained in a special
section in Child Development titled ‘Developmental
Psychology and the Neurosciences: Building a
Bridge” (Crnic & Pennington, 1987). This special
section contained Greenough, Black, and Wallace’s
(1987) now classic article on gxperience-dependent
and experience-expectant synaptogenesis, as well as
a review by the late Patricia Goldman-Rakic (1987)
on her seminal work on the development and func-
tions of the prefrontal cortex. Greenough and
colleagues elegantly demonstrated that experience
shapes the brain and Goldman-Rakic demonstrated
that a classic developmental milestone, object
permanence, depended on the development of the
prefrontal cortex.

" So, the field of developmental cognitive neurosci-
ence was rapidly emerging by the mid-1980s,
although its name came somewhat later. | first
encountered this term in a grant that Liz Bates had
written, seeking funding for her pioneering studies of
children with early unilateral lesions. By adding the
adjective ‘developmental’ to the term ‘cognitive
neuroscience,” Liz and other pioneers in this field
who used this term, like Mark Johnson {Johnson,
1997, 2005) and Chuck Nelson (Nelson & Luciana,
2001), were doing more than saying we ought to
study brain-behavior relations in children as well as

its. Instead, this addition signaled a bold theo-
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omplete without an understand-
how brain-behavior relations develop. In other
words, we cannot understand how the mature brain
functions without understanding how it develops.
This claim rested in part on dramatic advances in
elopmental neurobiology made by Hubel and
Wiesel (1963), Hubel, Wiesel, and Stryker (1977},
al., 1987}, Shatz (1992}
made it clear that plas-
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So mental structures are a product of probe
epigenesis (Gottlieb, 1992} or neural constructi
{Quartz & Sejnowski, 1997, Hence, Plaget's emer-
gentist theory about the ontogeny of a child’s concepts

{

and mental operations could be potentially grounded
in the materialist details of interactions
neurons in neural networks. Hence
architecture of a ‘typical” adult is the

s is cognitive de
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cognitive architecture without understanding how it
developed (and keeps developing, because plasticity
also characterizes the adult brain).

Another important scientific breakthrough con-
tributed to this perspective, namely the development
of connectionist or neural network models (QReillve &
Munakata, 2000; Rumelhart & McClelland, 1956).
These networks modeled the emergence of mental
structures from the interactions of artificial neurons
exposed to a particular learning history. and became
an extremely powerful tool for studying tyvpical and

atypical development.

The fact that a given individual's co:
architecture is a product of their own developmen-
tal and learning history leads to an important
corollary: the study of individual differences will
provide important insights about what is con-
strained and what can vary in brain and behavior
development. Atypical development provides an
important test of the universality of developmental
processes and sequences. As Neville's work with

sritive

congenitally  deaf demonstrated, differences in
experience will change brain development and the
localization of functions. We now have many
examples of this phenomenon, from mus
blind readers of Braille, and others (e.g., Galaburda
& Pascual-Leone, 2003). These examples make
wonder how many individuals actually have typical

alg,

development or whether typical development is
more of an average across diverse developmenta
tories.
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Examples of a multilevel understanding
of atypical development

There are now several examples of the successful
application of a developmental cognitive neurosci-
ence approach. In each of these examples, we can
10w trace a causal path from etiology to brain
development to cognition and finally to an indi-
vidual's conscious experience. We consider three
examples here: children with infantile cataracts,
early treated phenylketonuria (PKU), and develop-
mental dyslexia. Children with each condition
experience a somewhat different world as a result of
carly changes in brain development. In the case of
infantile cataracts, the effect on brain development is
environmentally mediated, whereas in dyslexia and
carly treated PKU it is genetically mediated. in the
cases of early treated PKU and infantile cataracts,
the analysis began with a known medical syndrome
and worked forward’ to behavior. In contrast, in the
case of developmental dyslexia, the analysis began
with behavior and worked backwards’ to the brain
and to genes. A brief description of each of these
examples follows.

Unless removed early, infantile (but not adult)

cataracts cause blindness in the affected eye, thus
disrupting the binocular visual input necessary for
the Drmauon Of ocular dommance columns, which
nput from each eye in primary
visual corte: 102, 1‘)92). A similar problem can
result from carly misalignment of the eyes, termed
esotropia and colloquially known as ‘cross- ~eyes’
{Held, 1985). Either condition disrupts the segrega-
tion of visual input from each eye to the brain. This
segregation of input is necessary for the brain to
detect when cach eye is fixating on the same object in
the world and to compute information about depth in
the visual scene. Neural network models of typical
and atypical development of ocular dominance
ller, Keller, & Stryker, 1989) and of
stereog ‘archland, 1995) have been developed.
In sum, we have a fairly complete account in neural
terms of how an alteration in early environmental
input changes brain development and the compu-
tations performed by neural networks to lead to a
change in conscious experience - loss of three-
dimensional vision.

In the second example, early treated PKU, it has
become clear that even mild elevations of phenylal-
anine levels lead to a dopamine depletion syndrome
that «:!nferc:m;faliy affects prefrontal and retinal
neurons, leading to deficits in working memory and
contrast acznsum{}a {(Diamond, Prevor, Callender, &
1997, Welsh, Pennington, Ozonoff, Rouse, &
. 1990]. PKU is a classic inherited metabolic
rdue to a single autosomal recessive muta-
tion of the gene that codes for the enzyme phenylal-
anine hydroxylase. Without this enzyme, the child
cannot convert phenvlalanine 1o tyrosine, the nec-
precursor for dopamine s}nthegism
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retina and the prefrontal cortex are particularly
sensitive to dopamine depletion, and so their func-
tion 1s differentially disrupted by such depletion. As
a result, a child with early treated PRU has less
control of their thoughts and less visual acuity.
A fairly mature cognitive science of
ated YI(L‘Ui‘O}i}S‘y{?‘{2()1(};’8(?23&
phenotype in le
Smith, in pre:s.s} Ef tucidation of this ¢«
type then enabled studies at other levels of ans 3
including molecular genetics, brain development,
neural network modeling, neurcimaging, and treat-
ment. The etiology of dyslexia fits a general multi-
factorial model in which genetic and environmental
risk and protective factors combine to pnx“ur@ 4
disorder defined by reading and spe ling problems in

ral candidate :

sgnitiv

some individuals. Rec nitly, sev

for dyslexia have been identified and ribonucleic acil
(RNA) interference studies in anin
strated that these gene > important for neuronal
migration and axon guid
press). So risk alleles for dyslexia appear to cf
brain development hy c‘:mngx:xé, how connecti
among neurons develop, a finding that is consistent
with earlier neuropathology studies by Galaburda

and colleagues (Galaburda, ¢ Sherman, Rosen, Aboi-
tiz, & Geschwind, 1985). Functional neuroimaging
studies indicate that reading requires integ

among several brain centers, including posterior

Is have demon-

ance (Pennington et al., in

ns

ton

and anterior portions of language cortex and

fusiform word area. This int ;\ ration depends oru-
cially on connections both within and between these
brain centers, so the early changes in neuronal
connectivity produced by these risk alleles likely
make it harder to integrate the brain centers
required for reading.

Of course, these brief sketches gloss over many
things that we do not yet understand. But [ thin
they demonstrate the potential power of a develo
mental cognitive neuroscience approach.

Issues and challenges
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has a single cognitive cause, such as a deficit in
phonological representations, then this is a powerful
premise indeed.

But the question is how well does the psycholo-
gical premise hold up when we start to view the causes
of typical or atypical behavior as being multifactorial
at the cognitive or psychological level (Bishop &
Snowling, 2004). 1t is becoming increasingly clear
that single cognitive deficit models of developmental
disorders, like dyslexia, attention deficit/hyperac-
tivity disorder (ADHD]), language impairment, or
autism, not work. Instead these syndromes
appear to arise from combinations of cognitive defi-
cits {Pennington, 2006). Moreover, such disorders
only rarely occur in isolation and they often share
cognitive deflcits. This comorbidity is an important
impetus for a multiple cognitive deficit model of
developmental disorders {(Pennington, Willcutt, &
Rhee, 20035). While I do not advocate abandoning the
psychological premise, theoretical work is needed on
how the interaction among cognitive deficits leads to
clusters of symptoms that define clinical syndromes.

Now we turn to our second example, the concept of
an endophenotype. Somewhat earlier in the field of
developmental cognitive neuroscience it was hoped
that ‘marker’ tasks would simplify the task of study-
ing brain-behavior relations in children or immature
animals. If a given task was sensitive to dysfunction
of a given brain structure in adults, then that task or
a suitable variant could be used as a marker for
function or dysfunction of that brain structure in
children. But there are three fallacies in this logic.
One is that we have already solved the localization
problem in adults and that the solution is simple, i.¢e.,
there is a straightforward mapping between behav-
toral tasks and brain structures. Neuroimaging and
other results have helped us discard that fallacy, al-
though it still persists {(see Van Orden, Pennington, &
Stone, 2001 for a discussion). The mapping between
a task, even a task component, and brain structures
is complex. The second fallacy is that brain behavior—
relations are invariant across development. We now
know this is not the case for language, vision, atten-
tion, and likely memory. The third fallacy is that the
causal arrow is unidirectional, from brain to behav-
tor, instead of bidirectional [see Oliver, Johnson,
Karmiloff-8mith, & Pennington, 2000j).

A newer incarnation of marker tasks can be found
in recent research on psychiatric genetics in the
concept of endophenotypes. The hope is that by
finding simpler behavioral phenotypes that are
associated and coheritable with a complex behav-
ioral disorder, we will make it easier to find some of
the genes that contribute to the complex behavioral
isorder. Although this strategy has shown some
, we must be careful to not oversimplify the
mapping between genes and endophenotypes. Just

as there are not genes for schizophrenia, there are
not genes for endophenotypes of schizophrenia. In-
stead, there are genetic variants that increase the
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risk for the development of schizophroni
possible (but not yet proven) that a sima

set of
these genes increases the risk for the development of

19
i

an endophenotype of schizophrenia. Especially when
the endophenotypes are behavioral, they &
of the same complexities faced by marker t
instance, deficits on certain eye movement tasks,

some

. For

like smooth pursuit, are accepted as endopheno-
types in schizophrenia, but the mapping of smooth

pursuit on to the brain and especially onto the

ome is likely very complex (Flint & Munalo,

While it is conceivable that a single risk allele mi
tlead to a

disrupt a single receptor type and this mi
deficit in smooth pursuit, there will be many other
ways to disrupt smooth pursuit, as well as or pro-
tective factors that lead some individuals with the
risk allele to have normal smooth pursuit.

In summary, the mapping between brain and
behavior is complex, bi-directional, and changes
with development. The same is even more true for the
mapping between genes and behavior. Although
behavior does not
(DNA) sequences, it does affect gene expression.
Most developmental scientists understand the com-

ange deoxyribonuclete acid

plexities in localizing behaviors or deficits. Their
sophistication in analyzing behavior and interpreting
relations with other levels of biological analysis will
be crucial as our capacity for finding genes and
brain structures that influence complex behaviors
increases.

The future
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ant to not forget what behavioral scientists bring to
these endeavors. To put it bluntly, scientists in these
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the behavioral tasks involved and the investicators’
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neuroconstructivist  theoretical  framework  (e.g.,
Mareschal et al., 2007} is replacing them. The clas-
sical assumptions of fixed localization of function
and a maturational view of development are being
replaced with a theory of interactive specialization.
Perhaps the most exciting prospect for the future
of neuropsychology and developmental cognitive
neuroscience is the potential for an even wider
interdisciplinary integration. The incorporation of
molecular genetics into the field of developmental
cognitive neuroscience provides a key link to the
fields of developmental neurobiology (e.g., Sanes,
Reh, & Harris, 2006) and evolutionary developmen-
tal biology - shortened as ‘evo devo’ ~ (Carroll, 20035).
Both fields are concerned with essentially the same
fundamental question as developmental psychology,
which is how do new forms emerge from simpler
ones. Developmental neurobiology is concerned with
how the form of the nervous system emerges in
ontogeny and evo devo is concerned with how new
forms emerge in evolution. Evo devo has provided the
profound insight that the widely different forms
found across animals are not produced by species-
specific genetic architectures but by variations in the
timing of expression of an ancient and generic set of
‘tool kit’ genes. So what evolved is developmental
differences in the sequence and timing of expression
of these tool kit genes. In other words, evolution
works by ‘tweaking’ development, and these tweaks

aur understanding of developmental disordoers 77

lead to an incredible variety of life forms. Evo dovo
makes it clear why there is considerable
homology across and why
can be so valuable for

opmental neurohiology.

Sao, the 5csﬁmmyfv nnocuous
‘developmental’ to interdiscip
ive neuroscience has
addition has the potential to integrate our field w
virtually all of biclogy and points toward a tn
interdisciplinary developmental science
likely find common answers to the question of how
new forms arise across

addition

gmi}i’mmc} implications.

that will

various levels of analysis.
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these relations are innate and static.

s An

« The field of neuropsychology, which attempts to understand brain-behavior relations, had long

« But accounting for typical and atypical behavioral development has made us understand that brain-
behavior relations are plastic and change with development.

interdisciplinary field of developmental cognitive neuroscience has emerged that uses multiple
methods, including molecular genetics, neuroimaging, neural network models, and behavioral
ments, to understand the development of brain-behavior relations.

¢ This field is now producing multilevel explanations of atypical development, such as the loss of sterco-
scopic vision in children with infantile cataracts, executive deficits in children with early treated phenyl-
ketonuria, and how alterations in genes that control neuronal migration lead to dysle

* The field of developmental cognitive neuroscience holds the promise of an even wider intergration, such as
with the fields of developmental and evolutionary hiology.
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