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Objective: This article aims to review basic and clinical studies outlining the roles of
prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compro-
mised in childhood neurodevelopmental disorders and how these map into the neuroimaging
evidence of circuit abnormalities in these disorders. Method: Studies of animals, normally
developing children, and patients with neurodevelopmental disorders were reviewed, with
focus on neuroimaging studies. Results: The PFC provides “top–down” regulation of
attention, inhibition/cognitive control, motivation, and emotion through connections with
posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention
and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate
motivation and affect. PFC circuitries are very sensitive to their neurochemical environment,
and small changes in the underlying neurotransmitter systems, e.g. by medications, can
produce large effects on mediated function. Neuroimaging studies of children with neurode-
velopmental disorders show altered brain structure and function in distinctive circuits
respecting this organization. Children with attention-deficit/hyperactivity disorder show
prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and
parietal regions, whereas children with conduct disorder show alterations in the paralimbic
system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together
with specific underlying limbic regions, regulating motivation and emotion control. Children
with major depressive disorder show alterations in ventral orbital and limbic activity,
particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-
compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control
pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Conclu-
sions: Altogether, there is a good correspondence between anatomical circuitry mediating
compromised functions and patterns of brain structure and function changes in children with
neuropsychiatric disorders. Medications may optimize the neurochemical environment in PFC
and associated circuitries, and improve structure and function. J. Am. Acad. Child Adolesc.
Psychiatry, 2012;51(4):356–367. Key Words: prefrontal cortex ADHD, OCD, MDD, arousal
T here is a remarkable convergence between
basic neuroscience studies in animals and
imaging studies in humans regarding the

brain circuits regulating attention, cognitive con-
trol, motivation, and emotion. They show a
dissociation of several fronto-striato-cerebellar
circuitries that mediate these functions, differ-
ing in the precise localization of these functions
within the prefrontal cortex and the basal gan-
glia, and their specific connections to limbic and

parieto-temporal association cortices and the cer-
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ebellum. Furthermore, there is evidence for rela-
tively late and progressive development of these
fronto-cortical and fronto-subcortical “top–down”
control systems between childhood and adulthood.
Children with neurodevelopmental disorders
show deficits in precisely these late developing
fronto-cortical and fronto-subcortical circuitries.
This article reviews the animal and human imag-
ing literature that delineates these dissociated
fronto-striatal circuitries and the functions they

mediate, and provides examples of how these
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ALTERED CIRCUITS IN DEVELOPMENTAL DISORDERS
circuitries are compromised in specific neurode-
velopmental disorders. We thus review a few
very specific “model disorders” that are illustra-
tive for abnormalities in these fronto-cortical and
fronto-subcortical circuitries that mediate atten-
tion, cognitive control, motivation, and emotion.
Thus we review the neuroimaging literature of
attention-deficit/hyperactivity disorder (ADHD)
as an example of a disruption of inferior fronto-
striatal networks of cognitive control and atten-
tion; pediatric major depression (MDD) as a
model for fronto-limbic disruption mediating
emotion control; pediatric obsessive-compulsive
disorder (OCD) as a model for disruption of both
orbito-frontal inhibitory and fronto-limbic anxi-
ety mediating networks; and conduct disorder
(CD) as a model disorder for deficits in fronto-
limbic circuits of motivation. A delineation of the
dissociated neurofunctional circuitries and their
mediating functions based on the basic neurosci-
ence literature, together with the description of

FIGURE 1 The prefrontal cortex (PFC) regulates attentio
connections with other brain regions. Note: Dorsal region
“top–down” attention through extensive projections to po
(vmPFC) regulates emotion through extensive projections
accumbens, and brainstem. In humans, the right inferior
inappropropiate motor responses through projections to t
with the cerebellar cortex via the pontine nuclei, which pa
positioned to orchestrate all aspects of behavior.
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specific model neurodevelopmental disorders,
will hopefully help with a better understanding
of the abnormalities and the development of
more targeted treatments for these disorders.

METHOD
The ISI Web of Science and Pubmed were searched
using the following search criteria from 1966 onward:
“prefrontal cortex”, “basal ganglia circuits”, “cerebel-
lar circuits”, “catecholamines”, “serotonin”, “neu-
rotransmitters”, “ADHD/CD/OCD/MDD and MRI/
fMRI”, “Methylphenidate/Atomoxetine and MRI/
FMRI”, “SSRI and MRI/FMRI”.

Brain Circuits Regulating Attention, Cognitive
Control, Motivation, and Emotion
The prefrontal cortex (PFC) is a highly evolved cortical
area that is essential for regulating attention, cognitive
control, motivation, and emotion. As shown in Figure

, distinct regions of PFC regulate this spectrum of

ehavior, and emotion through extensive network
ue) subserve higher cognitive functions and regulate
r cortical regions. In contrast, ventromedial PFC

bcortical areas such as the amygdala, nucleus
l cortex (IFC) is specialized for the inhibition of
sal ganglia. The PFC also has extensive connections
l projections through the basal ganglia. Thus, the PFC is
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ARNSTEN AND RUBIA
lating attention, planning, and working memory,
and the inferior frontal cortex (IFC) mediating func-
tions of cognitive control such as inhibitory control,
interference control, and cognitive flexibility. The
lateral orbitofrontal (OFC) and the ventromedial
PFC (including orbital) (VMPFC) regulate emotion
and motivation. The anterior cingulate cortex, which
many consider to be a PFC subregion, is similarly
organized such that the most caudal region regulates
movement, more anterior regions regulate attention/
cognition, and the most rostral and ventral regions
regulate emotion and motivation. Top-down regula-
tion by the PFC arises from its extensive connections to
posterior cortical and subcortical structures (Figure 1),
including parallel circuits through the basal ganglia
and cerebellum specialized for each processing do-
main (Figure 2).1 The following is a brief summary of
the functional contributions of these brain networks.
Regulation of Attention. More extensive reviews of
this topic are provided by Arnsten and Castellanos2

and Arnsten.3 Briefly, the association cortices make
distinct contributions to our attentional experience.
The higher order sensory cortices mediate “bottom–up
attention” based on the salience of sensory stimuli. The
inferior temporal cortices process sensory features

FIGURE 2 The work of Peter Strick (Middleton and Stri
connections with both the basal ganglia and cerebellar ci
movement (purple, thick arrows), cognition (blue, medium
structures are densely innervated by dopamine, cerebella
structures are innervated by both catecholamines. ASSOC
external segment; GPi � globus pallidus internal segmen
nigra pars reticulata; SubTHAL � subthalamic nucleus.
(what things are), and can focus resources on a partic- a
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lar detail, e.g., the color blue, or the perception and
ecognition of a face. Lesions to the inferior temporal
ortices can produce “agnosia,” where objects are seen
ut have no meaning. The posterior parietal associa-
ion cortices process where visual stimuli are in the
isual field, and whether the stimuli are moving. These
arietal cortices orient attention in time and space, and
re necessary for conscious perception. Lesions to the
arietal association cortices produce a syndrome
nown as contralateral neglect, in which stimuli in the

eft visual field are not consciously perceived. In
ontrast, the PFC provides top–down attention, regu-
ating attention based on relevance to the task. The
LPFC/IFC are key for inhibiting the processing of

rrelevant stimuli, sustaining attention over long de-
ays, and dividing and coordinating attention. Lesions
o the PFC can increase distractibility, impair concen-
ration, and weaken the ability to shift attention ap-
ropriately. All of these cortical areas are intricately

nterconnected, creating both feedforward and feed-
ack loops that optimally work together to provide a
nified and tightly regulated attentional experience.
hese cortical areas all project to the caudate nucleus,
hich in turn projects through the basal ganglia and

halamus to focus back on the PFC (Figure 2). The PFC

has shown that the prefrontal cortex (PFC) has extensive
s. Note: These form parallel loops for the execution of
ws), and emotion (red, thin arrows). Basal ganglia
ctures are innervated by norepinephrine, and cortical
ssociation; CTX � cortex; GPe � globus pallidus
ACCUMBENS � nucleus accumbens; SNr � substantia
ck1)
rcuit
arro

r stru
� a

t; N.
nd parietal cortices additionally project to the cere-
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ALTERED CIRCUITS IN DEVELOPMENTAL DISORDERS
bellar cortices by way of the pontine nuclei (Figure 2).
Thus, lesions in these subcortical areas, or in white
matter pathways that connect these circuits, can also
disrupt attentional control.
Inhibitory Control (Impulse Control). For a more
extensive review of this topic, the reader is referred to
Chambers et al.4 A variety of methods, including
lesion, imaging and transcranial magnetic stimulation
studies have revealed the importance of the inferior
PFC in inhibitory as well as cognitive control, espe-
cially in the right hemisphere. The right IFC has most
prominently been associated with behavioral impulse
control and motor inhibition, whereas bilateral IFC is
also associated with interference inhibition and cogni-
tive flexibility.5 The IFC interconnects with a large
number of structures involved with cognitive and
inhibitory motor control, including the premotor and
supplementary motor cortices, the primary motor cor-
tex, as well as basal ganglia, subthalamic nucleus, and
parietal and cerebellar cortices.
Regulation of Emotion and Motivation. A more exten-
sive review of this topic is found in Price et al. 6 and
Best et al.7 The ventral (orbital) and medial PFC are
extensively interconnected with structures involved
with emotion, including the amygdala, hypothalamus,
nucleus accumbens and brainstem nuclei (Figure 1).
The VMPFC is positioned to activate or inhibit these
structures, and studies in rats have shown that the
vmPFC is essential for inhibition of the fear response.
Studies in monkeys have shown the importance of
lateral OFC for reward processing and the flexible
regulation of emotional responses to reward and
punishment.8,9 In humans, damage to this region
produces unregulated emotional behavior, e.g., the
famous case of Phineas Gage. Importantly, damage
to this area early in childhood has been associated
with sociopathy, including reduced response to re-
ward and punishment.10

Arousal Pathways Modulate Brain Circuits
Mediating Attention and Emotion
The arousal pathways have powerful effects on PFC
function, and research in animals suggest that the
dorsal and ventral regions of the PFC have differing
chemical needs and differing reliance on specific
arousal systems.11 For example, the dorsal regions are
especially dependent on catecholamines, whereas the
OFC is particularly reliant on serotonin. These differ-
ing sensitivities may explain why cognitive disorders
are treated with catecholaminergic compounds, whereas
affective disorder are commonly treated with seroton-
ergic compounds. This work is reviewed briefly below.

New data also indicate how the arousal systems
interact with PFC microcircuits at the level of ion
channels to alter network connectivity. The regulatory
functions of the PFC are generated by local microcir-

cuits that consist of glutamatergic pyramidal cells and
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GABAergic inhibitory interneurons.12 The pyramidal
ells excite each other via NMDA synapses on spines
shown schematically in Figure 3) to generate the
ersistent firing needed for working memory or be-
avioral inhibition, whereas the GABAergic interneu-
ons provide lateral inhibition to enhance the specific-
ty of information. The activity of these circuits is

arkedly altered by the arousal systems, which can
unctionally strengthen or weaken microcircuit con-
ections in a dynamic manner to coordinate cognition
ith arousal state. A more thorough review is pro-

ided by Arnsten.13

Catecholamines. The DPFC is especially dependent on
he levels of the catecholamines dopamine (DA) and
orepinephrine (NE), exhibiting an “inverted U” dose-
esponse to both modulators. Depletion of cat-
cholamines from this region of PFC is as devastating
s removing the cortex itself. Similarly, blockade of D1
r alpha-2 receptors in PFC impairs PFC function. NE
timulation of post-synaptic, alpha-2A adrenoceptors
n PFC pyramidal cell spines is critical for strengthen-

ng appropriate PFC network connections (increasing
signals”), whereas DA D1 stimula tion on a separate
et of spines is important for shunting inappropriate
etwork connections (decreasing “noise”). The optimal

evel of D1 receptor stimulation varies according to
ask demands, e.g., moderate levels of D1 receptor
timulation are helpful for focused memory and atten-
ion, but can be harmful to attentional set-shifting or
nsight solutions when widespread network inputs

ay be needed. Thus, medications such as stimulants
hat increase DA actions may be helpful for some
ognitive tasks (e.g., mathematics homework) but in-
erfere with others (e.g., music composition). All PFC
unctions are impaired by very high levels of DA and
E release—as occurs during stress—through D1 and

lpha-1 receptor stimulation, respectively. Under these
onditions, all PFC networks disconnect and cell firing
s suppressed.

There have been fewer studies of catecholamine
ctions in other regions of PFC. Emerging data indicate
hat NE has beneficial effects on ventrolateral and OFC
unction as well; e.g., stimulation of alpha-2A recep-
ors with guanfacine improves the performance of

otor and emotional regulation tasks that depend on
hese PFC regions. Atomoxetine, a selective noradren-
line transporter inhibitor, has been shown to enhance
he activity and inhibitory functions of the right IFC
n healthy adults.14 DA appears to have a complex

influence on OFC function; these data are still
emerging. A detailed discussion is provided by
Robbins and Arnsten.11

Serotonin. The OFC is especially sensitive to serotonin,
s depletion of serotonin from OFC (but not DLPFC)
arkedly impairs OFC regulation of emotion and

nhibition.15,16 Given the immense complexity of sero-
tonergic receptors, the receptors mediating these ac-

tions are just beginning to be explored. Very high
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ARNSTEN AND RUBIA
levels of serotonin release, as occurs during stress, may
impair OFC function via the 5HT2 receptor family, and
serotonin actions at this receptor family may also
disrupt DLPFC function. However, the receptors me-
diating the beneficial effects of serotonin on OFC are
not yet known. Patients with disorders of vmPFC/
OFC function show intriguing links to serotonin; e.g.,
serotonin is altered in patients with uncontrolled ag-
gression,17 and serotonin medications are the mainstay
for treating depression. Thus, understanding sero-
tonin’s complex actions will be important for develop-
ing additional treatments for disorders of emotional
regulation.
Acetylcholine. Cholinergic projections to the associa-
tion cortices play an important role in vigilance, and in
coordinating attentional processing between anterior
and posterior association cortices.18 Cholinergic ac-
tions at nicotinic receptors are known to play an
important role in attention and working memory, and
nicotinic agonists are being considered as potential
treatments for attention disorders. A more detailed
discussion of serotonergic and cholinergic actions is

FIGURE 3 Working model of catecholamine actions on
The top–down regulatory abilities of the PFC depend on
N-methyl-D-aspartate (NMDA) glutamate synaptic connec
The catecholamines norepinephrine (NE) and dopamine (
strength of network synapses. By increasing or decreasing
alter the open state of ion channels on the spine and dete
reach the cell body. NE engagement of �2A receptors on
channels, and increases the strength of network connectio
receptors on a different set of spines can gate out inappr
However, high levels of cAMP production during stress di
stress effects may arise from excessive DA D1, and possib
disorder (ADHD) medications likely have some of their th
Stimulant medications such as methylphenidate (MPH) an
the NE transporter (NET); stimulants also block the DA tra
improve PFC function by indirectly increasing NE and DA
However, excessive doses of these medications impair PF
appears to have therapeutic effects by mimicking NE at p
PFC network connections.
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In summary, the arousal systems have powerful
influences on PFC networks. Understanding these
actions will inform new strategies for treating PFC
childhood disorders.

Neuro-Imaging of Childhood Disorders
Attention-Deficit/Hyperactivity Disorder. Attention-
deficit/hyperactivity disorder (ADHD) is character-
ized by behavioral features of inattention, impulsive-
ness, and hyperactivity.19 Neuropsychological deficits
re in tasks of inhibitory control, attention, and tim-
ng.20-22 Neuroimaging studies in patients with ADHD
ave shown consistent deficits in structure and func-

ion as well as interregional structural and functional
onnectivity in the IFC and DLPFC circuitries that
ediate attention and inhibitory control,22-28 with the
ost prominent structural deficits in the basal gan-

lia.26 Furthermore, longitudinal imaging studies
how that the impairment in these late developing
LPFC and IFC fronto-striato-cerebellar and fronto-
arietal systems may be due to a late structural

frontal cortex (PFC) circuits at the molecular level. Note:
rks of pyramidal cells that excite each other through
on dendritic spines, schematically shown in this figure.

have powerful and dynamic influences on the functional
lic adenosine monophosphate (cAMP) signaling, they
e whether a network input is able to get through to
es inhibits cAMP production, closes nearby potassium
onversely, moderate levels of DA engaging D1

te network inputs via increased production of cAMP.
nect all network inputs and shut off cell firing. These
E �1, receptor stimulation. Attention-deficit/hyperactivity
utic effects by enhancing catecholamine actions in PFC.
nonstimulant medication, atomoxetine (ATM) all block
rter (DAT). Animal studies show that these agents can
ulation of the �2A and D1 receptors, respectively.
ction. In contrast, the �2A agonist guanfacine (GFC)
naptic �2A receptors on spines, thereby strengthening

D1

DA

“NOISE”

DA
DAT

MPH

cAMP

N
M

DA

DA

l Cell
te K+

ork 
ons

DA
pre
netwo
tions
DA)

cyc
rmin
spin
ns. C
opria
scon
ly N

erape
d the
nspo
stim

C fun
ostsy

ida
ndri

etw
ecti
ortical maturation.29 A few recent studies have also
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ALTERED CIRCUITS IN DEVELOPMENTAL DISORDERS
pointed towards structural and functional deficits in
orbitofrontal-limbic circuitries; however, findings are
less consistent, do not survive meta-analytic studies
and may be confounded by comorbidities with other
disorder such as CD and MDD.22

Comparative functional magnetic resonance imag-
ing (fMRI) imaging studies have shown that inferior
prefrontal underactivation is disorder specific to pa-
tients with ADHD when compared with patients with
CD during four different tasks of inhibitory and atten-
tion control, as reviewed by Rubia22 (Figure 4A).30-33

IFC underactivation during tasks of inhibitory control,
furthermore, was also disorder specific compared with
patients with obsessive-compulsive disorder (Figure
5)34 or bipolar disorder,35 suggesting that IFC dysfunc-
tion may be a disorder-specific neurofunctional bio-
marker for ADHD.
Medications for Treatment of Childhood ADHD.
Food and Drug Administration (FDA)–approved med-

FIGURE 4 (A) Disorder-specific underactivation in atten
conduct disorder (CD) and healthy children in inferior fro
different cognitive tasks.30-33 (B) Disorder-specific undera
areas of the paralimbic system.30-33
ications for the treatment of childhood ADHD all
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enhance or mimic catecholamine transmission in PFC.
Stimulant medications such as methylphenidate (MPH)
and amphetamines block both the DA and NE transport-
ers, whereas atomoxetine blocks the NE transporter
(which clears DA as well as NE in the PFC). In contrast,
guanfacine directly mimics NE beneficial actions at post-
synaptic alpha-2A adrenoceptors in PFC.36

Therapeutic doses of MPH increase both NE and
DA in the PFC, enhance PFC neuronal responses, and
improve PFC attention and working memory func-
tion.37,38 Importantly, these doses have less effect on
subcortical DA release in areas such as nucleus accum-
bens,38 which may explain why they do not cause
addiction when they are used as prescribed. PET imag-
ing studies have shown that therapeutic doses of stimu-
lant medications engage DA receptors in striatum,39 and

lock DAT levels consistent with the small but significant
ncreases in DA release measured in rodent striatum.38

Functional imaging studies have shown that acute

-deficit/hyperactivity disorder (ADHD) relative to
cortex/dorsolateral PFC (IFC/DLPFC) during four
tion in CD relative to ADHD and healthy children in
tion
ntal
ctiva
and chronic methylphenidate treatment enhances and
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ARNSTEN AND RUBIA
even normalizes the activation as well as the func-
tional interregional connectivity of those fronto-
striatal networks that are impaired in the disorder
during disorder-relevant tasks.28,40-43 A recent meta-
regression analysis showed that long-term stimulant
medication in ADHD patients was associated with
more normal basal ganglia gray matter as opposed
to medication-naive patients who had reduced mea-
sures, suggesting “normalization” of brain structure
deficits.26

Conduct Disorder. Conduct disorder (CD) is defined
by the violation of the rights of others and societal
rules.19 CD overlaps clinically, behaviorally and cog-
nitively, with ADHD, with high comorbidity between
disorders, although motivation is thought to play a
greater role in the disorder.44 Nevertheless, recent
imaging studies in children with CD point toward a
relatively distinct underlying neuropathology. Struc-
tural and functional imaging studies suggest an abnor-
mality of the paralimbic system that comprises the
orbitofrontal cortex, anterior cingulate and superior
temporal cortices, and underlying limbic brain regions
in children with CD as well as with psychopathy, a
more severe subgroup of CD, with a worse adult
outcome30-33,45,46 (reviewed by Rubia22). Direct com-
parison with children with ADHD found disorder-
specific dysfunctions in patients with CD in areas of
the paralimbic system, including the orbitofrontal cor-
tex, anterior cingulate, insula, hippocampus, and su-
perior temporal lobes during tasks that are compro-
mised in both disorders such as motor inhibition,

FIGURE 5 Disorder-specific underactivation in children
compared with children with obsessive-compulsive disord
during motor inhibition and task switching.34
sustained attention, switching and reward (Figure d
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4B).30-33 Similar disorder-specific functional abnormal-
ities in paralimbic regions have been observed in
severely disruptive children with psychopathic traits
and ADHD when compared with a pure ADHD
group.47,48 These imaging dissociation findings paral-
el recent dimensional neuropsychological analyses
howing that DLPFC and IFC mediated functions of
nhibition and attention are associated with ADHD
ymptoms, while reward-related motivation functions
re specifically associated with CD symptoms.44

The above-mentioned studies have differentiated
between strictly non-comorbid patient groups to iden-
tify disorder-specific deficits, Future studies, however,
will need to investigate to what extent the more typical
comorbid ADHD/CD patients have deficits in both
lateral fronto-striato-parietal executive function net-
works as well as paralimbic networks of motivation
and affect control.
Pharmacological Treatment for CD. CD is not usually
reated pharmacologically, although recent data sug-
est that guanfacine may reduce oppositional symp-
oms in ADHD.49 As guanfacine can improve OFC
unction in monkeys,50 it is possible that it ameliorates
ggressive symptoms by strengthening OFC regula-
ion of emotion.

Pediatric Major Depressive Disorder. Compared with
he other developmental psychiatric disorders, the
nset of major depressive disorder (MDD) in the
ediatric population is relatively late, with rare onset
mong young children but with a sharp rise in inci-

attention-deficit/hyperactivity disorder (ADHD)
CD) and healthy children in inferior frontal cortex (IFC)
with
er (O
ence during adolescence. As opposed to ADHD or
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ALTERED CIRCUITS IN DEVELOPMENTAL DISORDERS
CD, where males predominate, a 2:1 female:male ratio
emerges in MDD in adolescence. MDD is characterized
predominantly by structural, biochemical and func-
tional alterations in OFC and vmPFC-limbic circuitries,
including pituitary gland, amygdala, and hippocam-
pus, that mediate motivation and emotion.51-56 There
is evidence for predominantly left OFC abnormalities
in structural studies of children with depression,57 in
line with evidence for a lateralization of positive
emotions and appetitive approach in left prefrontal
brain regions58,59 as well as with the left–right prefron-
tal imbalance hypothesis of adult MDD, which postu-
lates a hypoactive left PFC mediating positive emo-
tions together with a hyperactive right PFC mediating
negative emotions.60 The laterality differences be-
tween predominantly left frontal deficits in MDD,57 as
opposed to predominantly right frontal deficits in
ADHD,25,26 are interesting to note. fMRI studies of exec-
utive functions in pediatric MDD, in line with adult
MDD fMRI studies,61 observed abnormal activation in
attention areas of DLPFC, anterior cingulate and cau-
date.62 Interestingly, during motivated but not unmoti-
vated attention, we found underfunctioning of a right
hemispheric network of inferior fronto-striato-thalamic
attention and limbic reward processing areas, suggesting
that in MDD patients there is an abnormal interplay
between motivation and attention.63

Comparison studies between patients with MDD
and comorbid ADHD or CD are needed to establish to
what extent the motivational circuit deficits differ from
those in CD or to what extent the DLPFC attentional
circuits differ from those in ADHD. Although no direct
comparisons in fMRI are available, our deficit findings
in both disorders during the same sustained attention
task suggest that, whereas deficits are marked in
IFC-striatal circuitries in ADHD patients,31,41 deficits
in these circuits are observed in MDD only when
motivation comes into play,63 suggesting that attention
network dysfunction is caused by underlying motiva-
tion network deficits. This would also be in line with
differences in attention performance between disor-
ders, with fast, erratic responses in ADHD, reflecting
impulsiveness, versus slow, erratic responses in MDD,
suggesting sluggishness.64

Pediatric Obsessive-Compulsive Disorder. Obsessive-
compulsive disorder (OCD) in the pediatric popula-
tion is characterized by poor inhibition over intrusive,
unwanted obsessive thoughts and compulsions.19 At
the neuropsychological level, patients with OCD have
deficits in tasks of inhibitory control, including motor
response inhibition, cognitive inhibition, reflex inhibi-
tion, and verbal inhibition.65

In adult OCD, there appears to be a dysregulation
within orbitofronto-striatal systems with poor control of
orbitofrontal regions over overactive and hyperdop-
aminergic subcortical striato-thalamic activity, presum-
ably causing poor control over intruding compulsions

and obsessions, as well as deficits in DLPFC-parietal c
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cortices that mediate executive and attention functions.65

In children with OCD, structural, and functional imaging
findings point toward abnormalities in similar areas of
DLPFC, OFC, and ACC, striatal, and thalamic regions
(reviewed in Huyser et al.61). Two meta-analyses of

hole-brain structural morphology studies converge in
he finding that prefrontal gray matter density and
olumes are decreased in OCD patients, including me-
ial, dorsal, inferior, and orbital frontal areas, whereas

here is enhanced gray matter density in bilateral lentic-
lar nucleus and thalamus.66-68 Both studies observed no

age effects. The findings support the notion of an imbal-
ance between frontal and subcortical striato-thalamic
structures in patients with OCD.65,69 The relatively few
fMRI studies in pediatric OCD show reduced OFC and
IPFC, striato-thalamic, and temporo-parietal activation
during inhibition and planning tasks,70-72 as well as in
limbic areas during emotion processing.70

Few imaging studies have compared OCD to other
childhood disorders. Biochemical abnormalities of the
thalamus have been observed in OCD, but not MDD,
suggesting that this may be a disorder-specific abnor-
mality.69 The presence of enhanced gray matter vol-
umes in bilateral lenticular nuclei was specific to OCD
relative to anxiety, who had enhanced volumes,66

whereas anterior cingulate volume abnormalities were
shared between disorders.68 fMRI comparisons with
children with ADHD showed that, whereas inferior
prefrontal and caudate dysfunction was disorder spe-
cific to patients with ADHD and healthy controls
during two inhibitory tasks (Figure 5), the brain dys-
functions in other frontal regions, including DLPFC
and OFC, were shared.34 Activation in the caudate, in
particular, showed disorder-specific activation deficits.
Specifically, caudate activation was reduced in ADHD
relative to patients with OCD, and was, respectively,
negatively and positively correlated with symptom
severities.34,73 In ADHD versus OCD, the inverse
associations between caudate activation and symp-
toms could be consistent with evidence from positron
emission tomography (PET) studies for reduced stria-
tal dopamine availability in ADHD versus enhanced
dopamine availability in patients with OCD.74-80 The
findings thus are in line with theories of a dysregula-
tion of orbitofronto-striatal activation in OCD, with
poor orbitofrontal control over overactive basal gan-
glia activation,65 which is different from the evidence
in ADHD for a delayed maturation of inferior fronto-
striatal networks.29

Medications for Treatment of Pediatric MDD and
OCD. The mechanism of action of selective serotonin
euptake inhibitors (SSRIs) for the treatment of depres-
ion as well as for OCD is still being explored. Given
he important role of serotonin for OFC function,81 it is
empting to speculate that these agents normalize
mPFC regulation of emotion in both disorders, as
ell as lateral OFC-striatal regulation of inhibitory
ontrol in OCD. However, the great complexity of
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serotonin receptor pharmacology has slowed progress
in this arena. It is also not understood why the
therapeutic effects of SSRIs take several weeks to
develop. Research in animals has suggested that
growth factors may play a role in the antidepressant
response.82 The fact that the OFC develops rapidly
in this age group83 may also be a factor in childhood
depression and in its response to antidepressant
medications.

Few studies have directly tested the effects of SSRIs
on brain activation in pediatric MDD. Meta-analyses
and reviews of treatment effects on functional activa-
tion in adult depression show that SSRIs upregulate
lateral fronto-cortical regions while reducing abnor-
mally enhanced activation in ventromedial frontal,
striatal, and limbic brain regions, suggesting better
frontal control within fronto-limbic circuitries.61,84,85 In
pediatric OCD, chronic treatment with SSRIs has been
shown to normalise abnormal thalamus.86 amygdala,87

and parietal structure,88 as well as medial frontal func-
tion89 and abnormally enhanced striatal glutamate
levels,54 suggesting improvement of an imbalanced
interaction between fronto-striatal and fronto-limbic
serotonergic and glutamatergic systems.90

Many childhood psychiatric disorders likely arise
from insults to PFC-basal ganglia or fronto-limbic
circuits, which develop slowly and relatively late in
adolescence and are thus particularly susceptible to
injury.91,92 Differences have emerged with respect to
laterality, exact location, and specific fronto-striatal
pathways involved. Inferior prefrontal and striatal
dysmorphology and dysfunction is key to the cogni-
tive control deficits in ADHD, with evidence for infe-
rior prefrontal dysfunction being disorder-specific
when compared with patients with CD, PBD, and
OCD. CD patients, on the other hand, appear to have
more predominant abnormalities in the paralimbic
system, comprising vmPFC, and lateral OFC, the tem-
poral lobes and underlying limbic areas, that mediate
affect and motivation. These abrnomalities in CD seem
relatively disorder-specific, when compared with chil-
dren with ADHD but without comorbid CD. Orbito-
fronto-striato-limbic abnormalities in the context of
abnormal affect and motivation seem to be character-
istic for pediatric MDD. In children with OCD, there
appears to be a dysregulation within orbitofronto-
striatal systems with poor control of orbitofrontal
regions over overactive and hyperdopaminergic sub-
cortical striato-thalamic activity, presumably causing
poor control over intruding compulsions and obses-
sions. Although some differences have emerged, there
are also significant overlaps in affected circuitries, such
as in DLPFC-striato-parietal systems of attention and
EF which are compromised in ADHD, OCD, and
MDD, in line with shared neuropsychological deficits
in these functions.

Several limitations of the imaging literature needs

to be noted. The majority of imaging studies (expect
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for the direct comparisons in our lab) have included
patients with comorbidities. For example, the CD/
ADHD imaging literature is mostly confounded by
presence of ADHD/CD symptoms, the OCD literature
by co-presence of affective problems and MDD imag-
ing studies are counfounded by anxiety symptoms.
Comorbid conditions are likely to share more overlap
in their underlying neurobiology then non-comorbid
disorders. Future large-scale structural and func-
tional neuroimaging studies that compare between
very clearly defined comorbid and non-comorbid
disorders need to further disentangle shared and
disorder-specific neurobiological abnormalities, and
to clarify to what extent the comorbid presentation
shares the aetiopathophysiology of the non-comorbid
disorders or whether it is a more complex disorder,
characterized by a qualitatively different underlying
pathology.

Furthermore, the majority of structural imaging
studies are biased by region of interest analyses, that
restrict the search to a priori hypothesized regions, for
example targeting fronto-striatal regions in ADHD
and fronto-limbic areas in MDD. More whole brain
imaging analyses or meta-analyses comparing be-
tween disorders will be necessary for a more unbiased
picture. Functional imaging using fMRI is not measur-
ing neuronal activation directly but metabolic pro-
cesses. Therefore, activation clusters may reflect met-
abolic input into these regions from other activated
areas rather than activation of these areas directly.
Also, the subtraction method in fMRI analysis is less
than perfect and typically co-measures several cogni-
tive functions other than the target functions. Finally,
fMRI is highly task dependent and the fMRI literature
of disorders is biased by the choice of tasks, with more
cognitive tasks being tested in cognitive disorders like
ADHD and more affective paradigms been measured
in affective disorders. A challenge also resides in the
design or appropriate paradigms that map into core
behavioral problems. Future studies of disorder
comparisons will need to test a range of cognitive
and affective paradigms to obtain a comprehensive
picture of shared and disorder-specific deficits in
PFC circuitries.

Longitudinal studies should clarify differences in
neurodevelopmental trajectories which may likely be
more elucidating than a comparison between disor-
ders in any cross-sectional moment in time. Longitu-
dinal studies would also shed light on the currently
unknown relationship between the onset of disorders
and neurobiological circuit deficits. Although all neu-
rodevelopmental disorders are characterized by defi-
cits in the top–down control of specific PFC circuitries
that develop late in life, it is currently not understood
why some disorders develop earlier than others, and
how or whether this relates to the developmental
timecourse of the specific PFC circuitries affected in

the specific disorders. In ADHD, for example, there is
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evidence for a delay in normal brain maturation which
manifests relatively early in life.29 Pediatric MDD,
however, manifests relatively late in adolescence, de-
spite the fact that orbitofrontal-limbic areas develop
earlier than the inferior fronto-striatal circuitries impli-
cated in ADHD. It is likely that earlier developing
disorders such as autism and ADHD are more strongly
determined by genetic or perinatal factors than later
developing disorders such as MDD and OCD, where
environmental factors may be more prominent and
take longer to interact with neurobiological and ge-
netic systems, thus causing disruption.

Animal studies have begun to reveal the neuro-
chemical needs of these PFC networks affected in
childhood disorders, but pharmacological imaging
studies are needed to elucidate the effects of medica-
tions on brain networks in these neurodevelopmental
disorders. Catecholaminergic and serotoninergic med-
ications for disorders such as ADHD, MDD, or OCD
appear to help normalize neuromodulation of these
circuits, enhancing PFC regulation of abnormal behav-
ior and cognition, but their mechanisms of action still
need to be better understood. A more thorough under-
standing of disorder-specific neuroimaging correlates
and trajectories and their underlying neurotransmit-
ter abnormalities may ultimately help with a more
objective neuroimaging-based differential diagnosis

or prognosis. &

12. Goldman-Rakic PS. Cellular basis of working memory. Neuron.
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